OSNOVI METODE KONAČNIH ELEMENATA Predavanje II

Univerzitet u Novom Sadu, Fakultet tehničkih nauka, Departman za građevinarstvo i geodeziju Katedra za konstrukcije Prof. dr Andrija Rašeta Kabinet LG209 email: araseta@uns.ac.rs i araseta@gmail.com

OSNOVI METODE KONAČNIH ELEMENATA Predavanje II

Interpolacione funkcije. Direktan postupak 1D KE Linearna statička analiza

Literatura

 Metoda konačnih elemenata, deo I, A. Rašeta, FTN Novi Sad, 2019.

Metoda konačnih elemenata, deo II, A. Rašeta, I. Džolev, FTN Novi Sad, 2020.

821	UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA EDICIJA TEHNIČKE NAUKE - UDŽBENICI 821	868	UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA Edicija tehničke nauke - udžbenici
	Andrija Rašeta	JEO 2	Andrija Rašeta Igor Džolev
Andrija Rašeta: METODA KONAČNIH ELEMENATA. DEO 1	METODA KONAČNIH ELEMENATA Deo I	undrija Rašeta, Igor Džolev: METODA KONAČNIH ELEMENATA D	METODA KONAČNIH ELEMENATA DEO II
	Novi Sad, FTN 2019	4	Novi Sad, FTN 2020

Interpolacione funkcije

Polinomi

Komentar:

Polinomi se uglavnom koriste kao IF jer su jednostavni, mogu da obezbede dobru aproksimaciju promenljive u polju KE, kao i kontinuitet između elemenata

 $P_n(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2 + \alpha_4 x^3 + \cdots \qquad P_n(x, y) = \alpha_1 + \alpha_2 x + \alpha_3 y + \alpha_4 x^2 + \alpha_5 x y + \alpha_6 y^2 + \cdots$

 $P_n(x, y, z) = \alpha_1 + \alpha_2 x + \alpha_3 y + \alpha_4 z + \alpha_5 x^2 + \alpha_6 y^2 + \alpha_7 z^2 + \alpha_8 xy + \alpha_9 yz + \alpha_{10} xz + \cdots$

Paskalov trougao

Paskalov tetraedar

Interpolacione funkcije. Direktan postupak

 Komponente pomeranja proizvoljne tačke u polju KE neprekidne su funkcije koordinata tačaka i mogu da se prikažu na sledeći način

 $\mathbf{u}=\mathbf{A}\boldsymbol{\alpha}$

- gde su
 - α_i (i = 1, 2, ..., n) nezavisni nepoznati koeficijenti interpolacionog polinoma (generalisane koordinate) čiji je broj jednak broju stepeni slobode KE
 - A matrica promenljivih koje čine polinom i koje odgovaraju problemu koji se rešava (jednodimenzionalni, dvodimenzionalni i trodimenzionalni), a koja se naziva još i matrica polja KE ili matrica polinoma

Vektor generalisanih pomeranja u čvorovima KE glasi

 $\mathbf{d} = \{d_1 \quad d_2 \quad \cdots \quad d_n\}^T$

gde je n broj stepeni slobode KE

Interpolacione funkcije. Direktan postupak

Da bi se odredile nepoznate generalisane koordinate α_i , odnosno da bi se izrazile preko osnovnih nepoznatih generalisanih pomeranja d_i u čvorovima KE, koristi se interpolacija $\mathbf{u} = \mathbf{A}\alpha$ koja se primenjuje na koordinate čvorova KE i dobija se

 $\mathbf{d} = \mathbf{C} \boldsymbol{\alpha}$

gde je C tzv. matrica oblika

 Nepoznate generalisane koordinate α_i određuju se rešavanjem prethodne jednačine

$$\boldsymbol{\alpha} = \mathbf{C}^{-1}\mathbf{d} \qquad \qquad \det(\mathbf{C}) \neq 0$$

• Kombinujući $\mathbf{u} = \mathbf{A}\alpha$ i $\alpha = \mathbf{C}^{-1}\mathbf{d}$ sledi

$$\mathbf{u} = \mathbf{A}\mathbf{C}^{-1}\mathbf{d} = \mathbf{N}\mathbf{d}$$

gde je matrica IF

 $\mathbf{N} = \mathbf{A}\mathbf{C}^{-1}$

1D KE. Rekapitulacija osnovnih jednačina linearne teorije elastičnosti

- Linijski ili jednodimenzionalni ili 1D problem
- Pravolinijski prizmatičan štap. Ojler-Bernulijeva teorija savijanja

1D KE. Rekapitulacija osnovnih jednačina linearne teorije elastičnosti

Uslovi ravnoteže

$$\begin{bmatrix} d/d x & 0 & 0 & 0 \\ 0 & 0 & 0 & -d^2/d x^2 \\ 0 & 0 & d^2/d x^2 & 0 \\ 0 & d/d x & 0 & 0 \end{bmatrix} \begin{bmatrix} N \\ M_x \\ M_y \\ M_z \end{bmatrix} = - \begin{cases} q_x \\ q_y \\ q_z \\ m_x \end{cases} \rightarrow \mathbf{D}_e \boldsymbol{\sigma} = -\mathbf{q}$$

Veze između deformacija i pomeranja

$$\begin{cases} \varepsilon_x \\ \theta_x \\ \kappa_y \\ \kappa_z \\ \kappa_z \\ \kappa_z \end{cases} = \begin{bmatrix} d/d x & 0 & 0 & 0 \\ 0 & 0 & 0 & d/d x \\ 0 & 0 & -d^2/d x^2 & 0 \\ 0 & d^2/d x^2 & 0 & 0 \end{bmatrix} \begin{cases} u \\ v \\ w \\ \varphi_x \\ \varphi_x \end{cases} \rightarrow \mathbf{\varepsilon} = \mathbf{D}_k \mathbf{u}$$

Veze između napona i deformacija

$$\begin{cases} N\\ M_{\chi}\\ M_{y}\\ M_{z} \end{cases} = \begin{bmatrix} EA & 0 & 0 & 0\\ 0 & GI_{\chi} & 0 & 0\\ 0 & 0 & EI_{y} & 0\\ 0 & 0 & 0 & EI_{z} \end{bmatrix} \begin{cases} \varepsilon_{\chi}\\ \theta_{\chi}\\ \kappa_{y}\\ \kappa_{z} \end{cases} \rightarrow \boldsymbol{\sigma} = \mathbf{D} \boldsymbol{\varepsilon}$$

Esencijani i prirodni granični uslovi

$$\begin{cases} u_b \\ v_b \\ w_b \\ \varphi_{bx} \\ \varphi_{by} \\ \varphi_{bz} \end{cases} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -d/dx & 0 \\ 0 & d/dx & 0 & 0 \end{bmatrix} \begin{cases} u \\ v \\ w \\ \varphi_x \end{cases} \rightarrow \mathbf{u}_b = \mathbf{R}_u \mathbf{u} \qquad \begin{cases} F_{bx} \\ F_{by} \\ F_{bz} \\ M_{bx} \\ M_{by} \\ M_{bz} \end{cases} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -d/dx \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{cases} N \\ M_x \\ M_y \\ M_z \end{pmatrix} \rightarrow \mathbf{q}_b = \mathbf{R}_q \boldsymbol{\sigma}$$

1D KE. Štapni KE. Aksijalno naprezanje. Interpolacione funkcije. Direktan postupak

$$x = 0 \qquad u = u_1 = \alpha_1$$
$$x = L \qquad u = u_2 = \alpha_1 + \alpha_2 L$$

Vektor generalisanih pomeranja čvorova KE glasi

$$\mathbf{d} = \mathbf{C}\boldsymbol{\alpha} \to \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & L \end{bmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} \qquad \mathbf{C} = \begin{bmatrix} 1 & 0 \\ 1 & L \end{bmatrix} \qquad \mathbf{C}^{-1} = \frac{1}{L} \begin{bmatrix} L & 0 \\ -1 & 1 \end{bmatrix}$$

Matrica IF glasi

$$\mathbf{N} = \mathbf{A}\mathbf{C}^{-1} = \begin{bmatrix} 1 & x \end{bmatrix} \frac{1}{L} \begin{bmatrix} L & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 - \frac{x}{L} & \frac{x}{L} \end{bmatrix} = \begin{bmatrix} N_1(x) & N_2(x) \end{bmatrix}$$

1D KE. Štapni KE. Aksijalno naprezanje. Interpolacione funkcije

 Raspodela pomeranja u polju KE u zavisnosti od generalisanih pomeranja u čvorovima glasi

 $u = \mathbf{N}\mathbf{d} = u_1 N_1(x) + u_2 N_2(x)$

1D KE. Štapni KE. Aksijalno naprezanje. Interpolacione funkcije $\frac{R_1, u_1}{1}$

 IF mogu da se odrede rešavanjem homogene diferencijalne jednačine aksijalnog naprezanja

$$EA\frac{d^2u}{dx^2} = 0$$

- Rešenje se pretpostavlja u obliku $u = \alpha_1 + \alpha_2 x$
- Koristeći granične uslove

$$u(0) = u_1 \qquad \qquad u(L) = u_2$$

sledi

$$u(0) = \alpha_1 = u_1$$
 $u(L) = \alpha_1 + \alpha_2 L = u_1 + \alpha_2 L = u_2 \Rightarrow \alpha_2 = \frac{u_2 - u_1}{L}$

raspodela pomeranja u polju KE glasi

$$u(x) = u_1 + \frac{u_2 - u_1}{L}x = \left(1 - \frac{x}{L}\right)u_1 + \frac{x}{L}u_2$$

odnosno IF su

$$N_1(x) = 1 - \frac{x}{L} \qquad N_2(x) = \frac{x}{L}$$

Komentari:

- IF predstavljaju tačno rešenje homogene diferencijalne jednačine aksijalnog naprezanja KE uz odgovarajuće granične uslove po pomeranjima (jedinična stanja pomeranja krajeva štapa u pravcu ose KE)
- IF N_i za čvor i ima vrednost 1, a u svim ostalim čvorovima KE ima vrednost 0

х, и

1D KE. Štapni KE. Aksijalno naprezanje. Matrica krutosti $\frac{R_1, u_1}{1}$ $\frac{E, A}{2}$ $\frac{2}{2}$ R_2, u_2 x, u_3

 Vektori stepeni slobode (pomeranja u pravcu ose štapa) i generalisanih sila (aksijalne sile) u čvorovima KE su

 $\mathbf{d}^T = \{ u_1 \quad u_2 \} \qquad \mathbf{R}^T = \{ R_1 \quad R_2 \}$

 Raspodela pomeranja (u pravcu ose KE) u polju KE u zavisnosti od pomeranja u čvorovima

$$u = N_1 u_1 + N_2 u_2 \qquad \mathbf{u} = \mathbf{N} \mathbf{d} = \begin{bmatrix} N_1 & N_2 \end{bmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

IF su $x \qquad x$

$$N_1 = 1 - \frac{x}{L}$$
 $N_2 = \frac{x}{L}$ $\mathbf{N} = \begin{bmatrix} N_1 & N_2 \end{bmatrix} = \begin{bmatrix} 1 - \frac{x}{L} & \frac{x}{L} \end{bmatrix}$

• Matrica **B** = $\mathbf{D}_k \mathbf{N} = \begin{bmatrix} \frac{d}{dx} \end{bmatrix} \begin{bmatrix} N_1 & N_2 \end{bmatrix} = \begin{bmatrix} \frac{dN_1}{dx} & \frac{dN_2}{dx} \end{bmatrix} = \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix}$ • Matrica **D** = $\begin{bmatrix} EA \end{bmatrix}$

• Matrica krutosti $\mathbf{k} = \int_{0}^{L} \mathbf{B}^{T} \mathbf{D} \mathbf{B} dx = \frac{\mathbf{E} \mathbf{A}}{L} \begin{bmatrix} \mathbf{1} & -\mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{bmatrix}$

Komentar:

 γ_{\neg}

Kod opruge umesto EA/L treba staviti krutost opruge c

1D KE. Štapni KE. Slobodna torzija. $M_{1x}, \varphi_{1x} = 1$ 2 *M*_{2x}, φ_{2x} Matrica krutosti E, I_x

Vektori stepeni slobode (uvijanje) i generalisanih sila (momenti torzije) u čvorovima KE su

 $\mathbf{d}^T = \{ \varphi_{1x} \quad \varphi_{2x} \} \qquad \mathbf{R}^T = \{ M_{1x} \quad M_{2x} \}$

Raspodela uvijanja u polju KE može da se prikaže u zavisnosti od uvijanja u čvorovima na sledeći način

 $\varphi_x = N_1 \varphi_{1x} + N_2 \varphi_{2x} \qquad \qquad \mathbf{\Phi}_x = \mathbf{N} \mathbf{d} = \begin{bmatrix} N_1 & N_2 \end{bmatrix} \begin{pmatrix} \varphi_{1x} \\ \varphi_{2x} \end{pmatrix}$ Usvajaju se IF kao i kod štapnog KE (aksijalno naprezanje)

$$N_{1} = 1 - \frac{x}{L} \qquad N_{2} = \frac{x}{L} \qquad \mathbf{N} = \begin{bmatrix} N_{1} & N_{2} \end{bmatrix} = \begin{bmatrix} 1 - \frac{x}{L} & \frac{x}{L} \end{bmatrix}$$
Matrica **B** = $\mathbf{D}_{k}\mathbf{N} = \begin{bmatrix} \frac{d}{dx} \end{bmatrix} \begin{bmatrix} N_{1} & N_{2} \end{bmatrix} = \begin{bmatrix} \frac{dN_{1}}{dx} & \frac{dN_{2}}{dx} \end{bmatrix} = \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix}$
Matrica **D** = $\begin{bmatrix} GI_{x} \end{bmatrix}$
Matrica krutosti
$$\mathbf{k} = \int_{0}^{L} \mathbf{B}^{T}\mathbf{D}\mathbf{B}dx = \frac{GI_{x}}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

2

1D KE. Gredni KE. Interpolacione funkcije. Direktan postupak

Savijanje u x – y ravni

 Posmatra se gredni KE izložen savijanju u x – y ravni (četiri stepena slobode) za koji se usvaja raspodela pomeranja u polju KE u obliku polinoma koji sadrži četiri koeficijenta

$$v = \alpha_1 + \alpha_2 x + \alpha_3 x^2 + \alpha_4 x^3 \quad \mathbf{A} = \begin{bmatrix} 1 & x & x^2 & x^3 \end{bmatrix} \quad \boldsymbol{\alpha} = \begin{cases} \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{cases}$$

- Za čvorove KE sledi (
$$\varphi_z = \frac{dv}{dx} = \alpha_2 + 2\alpha_3 x + 3\alpha_4 x^2$$
)

$$x = 0 \qquad v = v_1 = \alpha_1$$

$$x = 0$$
 $\varphi_z = \varphi_{1z} = \alpha_2$

 $x = L \qquad v = v_2 = \alpha_1 + L\alpha_2 + L^2\alpha_3 + L^3\alpha_4$

$$x = L \qquad \varphi_z = \varphi_{2z} = \alpha_2 + 2L\alpha_3 + 3L^2\alpha_4$$

х

 (α_1)

 $\sum_{2} M_{1z}, \varphi_{1z}$

y,v 1

1D KE. Gredni KE. Interpolacione funkcije. Direktan postupak

Savijanje u x – y ravni

Vektor generalisanih pomeranja čvorova KE glasi

$$\mathbf{d} = \mathbf{C}\boldsymbol{\alpha} \rightarrow \begin{cases} v_1 \\ \varphi_{1z} \\ v_2 \\ \varphi_{2z} \end{cases} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & L & L^2 & L^3 \\ 0 & 1 & 2L & 3L^2 \end{bmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{pmatrix} \qquad \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & L & L^2 & L^3 \\ 0 & 1 & 2L & 3L^2 \end{bmatrix} \qquad \mathbf{C}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{3}{L^2} & -\frac{2}{L} & \frac{3}{L^2} & -\frac{1}{L} \\ \frac{2}{L^3} & \frac{1}{L^2} & -\frac{2}{L^3} & \frac{1}{L^2} \end{bmatrix}$$

Λ

Λ

Λ ¬

Matrica IF glasi

$$\mathbf{N} = \mathbf{A}\mathbf{C}^{-1} = \begin{bmatrix} 1 & x & x^2 & x^3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{3}{L^2} & -\frac{2}{L} & \frac{3}{L^2} & -\frac{1}{L} \\ \frac{2}{L^3} & \frac{1}{L^2} & -\frac{2}{L^3} & \frac{1}{L^2} \end{bmatrix}$$

$$\mathbf{N} = \begin{bmatrix} 1 - \frac{3x^2}{L^2} + \frac{2x^3}{L^3} & x - \frac{2x^2}{L} + \frac{x^3}{L^2} & \frac{3x^2}{L^2} - \frac{2x^3}{L^3} & -\frac{x^2}{L} + \frac{x^3}{L^2} \end{bmatrix}$$

х

*Ε, Ι*_z

 T_{2y} , v

 M_{1z}, φ_{1z}

y,v /1

2

Savijanje u x – y ravni

OMKE

 Raspodela pomeranja u polju KE u zavisnosti od generalisanih pomeranja u čvorovima glasi

 $v = \mathbf{N}\mathbf{d} = v_1 N_1(x) + \varphi_{1z} N_2(x) + v_2 N_3(x) + \varphi_{2z} N_4(x)$

- Savijanje u x y ravni
 - IF mogu da se odrede rešavanjem homogene diferencijalne jednačine savijanja

$$EI_z \frac{d^4v}{dx^4} = 0$$

- Rešenje se pretpostavlja u obliku $v = \alpha_1 + \alpha_2 x + \alpha_3 x^2 + \alpha_4 x^3$
- Za IF N₁(x) granični uslovi glase

$$v(0) = 1$$
 $\varphi_z = \frac{dv}{dx}|_{x=0} = 0$ $v(L) = 0$ $\varphi_z = \frac{dv}{dx}|_{x=L} = 0$

Koristeći granične uslove sledi

$$v(0) = \alpha_1 = 1 \qquad \qquad \varphi_z = \frac{dv}{dx}|_{x=0} = \alpha_2 = 0$$
$$v(L) = \alpha_1 + \alpha_2 L + \alpha_3 L^2 + \alpha_4 L^3 = 0 \qquad \varphi_z = \frac{dv}{dx}|_{x=L} = \alpha_2 + 2L\alpha_3 + 3L^2\alpha_4 = 0$$

х

*E, I*_z

2

Savijanje u x – y ravni

Rešavanjem prethodnog sistema sledi

$$\alpha_1 = 1$$
 $\alpha_2 = 0$ $\alpha_3 = -\frac{3}{L^2}$ $\alpha_4 = \frac{2}{L^3}$

IF glasi

$$N_1(x) = 1 - \frac{3x^2}{L^2} + \frac{2x^3}{L^3}$$

- Analognim postupkom se određuju i ostale IF
- IF predstavljaju tačno rešenje homogene diferencijalne jednačine savijanja KE u x – y ravni uz odgovarajuće granične uslove po pomeranjima (jedinična stanja pomeranja krajeva KE)
- $N_i(x)$ predstavlja elastičnu liniju grede, u x y ravni, usled stanja pomeranja $d_i = 1$
- IF N_i za čvor i ima vrednost 1, a u svim ostalim čvorovima KE ima vrednost 0

1D KE. Gredni KE. Matrica krutosti

Savijanje u x – y ravni

 Vektori generalisanih pomeranja (stepeni slobode) i generalisanih sila u čvorovima KE

 $\mathbf{d}^{T} = \{ v_{1} \quad \varphi_{1z} \quad v_{2} \quad \varphi_{2z} \} \qquad \mathbf{R}^{T} = \{ T_{1y} \quad M_{1z} \quad T_{2y} \quad M_{2z} \}$

 Raspodela pomeranja u polju KE u zavisnosti od generalisanih pomeranja u čvorovima glasi

 $v = N_1 v_1 + N_2 \varphi_{1z} + N_3 v_2 + N_4 \varphi_{2z} \qquad \mathbf{v} = \mathbf{N} \mathbf{d} = \begin{bmatrix} N_1 & N_2 & N_3 & N_4 \end{bmatrix} \begin{cases} v_1 \\ \varphi_{1z} \\ v_2 \\ \varphi_{2z} \end{cases}$

OMKE

1D KE. Gredni KE. Matrica krutosti

• Savijanje u x - y ravni
• IF su

$$N_1 = 1 - \frac{3x^2}{L^2} + \frac{2x^3}{L^3}$$
 $N_2 = x - \frac{2x^2}{L} + \frac{x^3}{L^2}$ $N_3 = \frac{3x^2}{L^2} - \frac{2x^3}{L^3}$ $N_4 = -\frac{x^2}{L} + \frac{x^3}{L^2}$
 $N_{xy} = [N_1 \quad N_2 \quad N_3 \quad N_4]$
• Matrica B_{xy}
 $B_{xy} = D_{kxy}N_{xy} = \left[\frac{d^2}{dx^2}\right][N_1 \quad N_2 \quad N_3 \quad N_4] = \left[-\frac{6}{L^2} + \frac{12x}{L^3} - \frac{4}{L} + \frac{6x}{L^2} - \frac{6}{L^2} - \frac{12x}{L^3} - \frac{2}{L} + \frac{6x}{L^2}\right]$
• Matrica D_{xy}
 $D_{xy} = [EI_z]$
• Matrica krutosti
 $\mathbf{k}_{xy} = \int_{0}^{L} \mathbf{B}_{xy}^T \mathbf{D}_{xy} \mathbf{B}_{xy} dx = \frac{EI_z}{L^3} \begin{bmatrix} 12 \quad 6L \quad -12 \quad 6L \\ 6L \quad 4L^2 \quad -6L \quad 2L^2 \\ -12 \quad -6L \quad 12 \quad -6L \\ 6L \quad 2L^2 \quad -6L \quad 4L^2 \end{bmatrix}$

Savijanje u x – z ravni

Analognim postupkom kao i za savijanje u x – y ravni određuju se IF

$$N_1(x) = 1 - \frac{3x^2}{L^2} + \frac{2x^3}{L^3} \qquad N_2(x) = -x + \frac{2x^2}{L} - \frac{x^3}{L^2} \qquad N_3(x) = \frac{3x^2}{L^2} - \frac{2x^3}{L^3} \qquad N_4(x) = \frac{x^2}{L} - \frac{x^3}{L^2}$$

$$w = \mathbf{N}\mathbf{d} = w_1 N_1(x) + \varphi_{1y} N_2(x) + w_2 N_3(x) + \varphi_{2y} N_4(x)$$

1D KE. Gredni KE. Matrica krutosti

Savijanje u x – z ravni

 Vektori generalisanih pomeranja (stepeni slobode) i generalisanih sila u čvorovima KE

 $\mathbf{d}^{T} = \{ w_{1} \quad \varphi_{1y} \quad w_{2} \quad \varphi_{2y} \} \qquad \mathbf{R}^{T} = \{ T_{1z} \quad M_{1y} \quad T_{2z} \quad M_{2y} \}$

 Raspodela pomeranja u polju KE u zavisnosti od generalisanih pomeranja u čvorovima glasi

$$w = N_1 w_1 + N_2 \varphi_{1y} + N_3 w_2 + N_4 \varphi_{2y} \qquad \mathbf{w} = \mathbf{N} \mathbf{d} = \begin{bmatrix} N_1 & N_2 & N_3 & N_4 \end{bmatrix} \begin{cases} w_1 \\ \varphi_{1y} \\ w_2 \\ \varphi_{2y} \end{cases}$$

OMKE

1D KE. Gredni KE. Matrica krutosti

• Savijanje u x - z ravni
• IF su

$$N_1 = 1 - \frac{3x^2}{L^2} + \frac{2x^3}{L^3}$$
 $N_2 = -x + \frac{2x^2}{L} - \frac{x^3}{L^2}$ $N_3 = \frac{3x^2}{L^2} - \frac{2x^3}{L^3}$ $N_4 = \frac{x^2}{L} - \frac{x^3}{L^2}$
 $N_{xz} = [N_1 \quad N_2 \quad N_3 \quad N_4]$
• Matrica B_{xz}
 $B_{xz} = D_{kxz}N_{xz} = \left[-\frac{d^2}{dx^2} \right] [N_1 \quad N_2 \quad N_3 \quad N_4] = \left[\frac{6}{L^2} - \frac{12x}{L^3} - \frac{4}{L} + \frac{6x}{L^2} - \frac{6}{L^2} + \frac{12x}{L^3} - \frac{2}{L} + \frac{6x}{L^2} \right]$
• Matrica D_{xz}
 $D_{xz} = [EI_y]$
• Matrica krutosti
 $\mathbf{k}_{xz} = \int_{0}^{L} \mathbf{B}_{xz}^T \mathbf{D}_{xz} \mathbf{B}_{xz} dx = \frac{EI_y}{L^3} \begin{bmatrix} 12 & -6L & -12 & -6L \\ -6L & 4L^2 & 6L & 2L^2 \\ -12 & 6L & 12 & 6L \\ -6L & 2L^2 & 6L & 4L^2 \end{bmatrix}$

1D KE. Gredni KE. Aksijalno naprezanje i savijanje u x-y i x-z ravni. Matrica krutosti

1D KE. Gredni KE u prostoru. Matrica krutosti

1D KE. Statičko značenje elemenata matrice krutosti

• Element k_{ij} (i, j = 1, 2, ..., 6) matrice krutosti KE ima značenje do koga se dolazi kada se u razvijenom obliku napiše izraz za i-tu generalisanu silu R_i (j = 1, 2, ..., 6)

$$\begin{cases} R_1 \\ R_2 \\ R_3 \\ R_4 \\ R_5 \\ R_6 \end{cases} = \begin{bmatrix} k_{11} & k_{12} & k_{13} & k_{14} & k_{15} & k_{16} \\ k_{21} & k_{22} & k_{23} & k_{24} & k_{25} & k_{26} \\ k_{31} & k_{32} & k_{33} & k_{34} & k_{35} & k_{36} \\ k_{41} & k_{42} & k_{43} & k_{44} & k_{45} & k_{46} \\ k_{51} & k_{52} & k_{53} & k_{54} & k_{55} & k_{56} \\ k_{61} & k_{62} & k_{63} & k_{64} & k_{65} & k_{66} \end{bmatrix} \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \\ d_5 \\ d_6 \end{pmatrix} \quad R_i = k_{i1}d_1 + k_{i2}d_2 + \ldots + k_{i6}d_6 = \sum_{j=1}^6 k_{ij}d_j$$

• odnosno, element k_{ij} (npr. k_{34}) matrice krutosti KE predstavlja generalisanu silu R_i ($R_3 = M_i$) kada je generalisano pomeranje $d_j = 1$ ($d_4 = 1$), a sva ostala generalisana pomeranja $d_i = 0$, $i \neq j$ ($d_1 = d_2 = d_3 = d_5 = d_6 = 0$)

$$\begin{cases} R_1 \\ R_2 \\ R_3 \\ R_4 \\ R_5 \\ R_6 \end{cases} = \begin{bmatrix} k_{11} & k_{12} & k_{13} & k_{14} & k_{15} & k_{16} \\ k_{21} & k_{22} & k_{23} & k_{24} & k_{25} & k_{26} \\ k_{31} & k_{32} & k_{33} & k_{34} & k_{35} & k_{36} \\ k_{41} & k_{42} & k_{43} & k_{44} & k_{45} & k_{46} \\ k_{51} & k_{52} & k_{53} & k_{54} & k_{55} & k_{56} \\ k_{61} & k_{62} & k_{63} & k_{64} & k_{65} & k_{66} \end{bmatrix} \begin{pmatrix} d_1 = 0 \\ d_2 = 0 \\ d_3 = 0 \\ d_4 = 1 \\ d_5 = 0 \\ d_6 = 0 \end{pmatrix}$$
stanje pomeranja $d_4 = 1$

1D KE. Statičko značenje elemenata matrice krutosti

- Elementi j-te kolone matrice krutosti (k_{1j} , k_{2j} , ..., k_{6j}) predstavljaju generalisane sile na krajevima KE pri stanju pomeranja $d_j = 1$

	$\begin{bmatrix} \mathbf{k}_1 \\ \mathbf{k}_2 \\ \mathbf{k}_2 \end{bmatrix} \begin{bmatrix} \mathbf{k}_1 \\ \mathbf{k}_2 \\ \mathbf{k}_3 \end{bmatrix}$	$k_{11} k_{12} \\ k_{21} k_{22} \\ k_{23} k_{23} $	k ₁₃ k ₂₃ k ₂₂	$\begin{array}{c} \mathbf{k_{14}} \\ \mathbf{k_{24}} \\$	$k_{15} k_{10}$ $k_{25} k_{20}$ $k_{25} k_{20}$		C)beleža	vanje b kolonc	orojevin 1 u LKS	na vrsto	a i
	$\begin{pmatrix} \mathbf{R}_{3} \\ \mathbf{R}_{5} \\ \mathbf{R}_{6} \end{pmatrix} = \begin{bmatrix} \mathbf{R}_{3} \\ \mathbf{R}_{4} \\ \mathbf{R}_{5} \\ \mathbf{R}_{6} \end{bmatrix}$	$k_{41} = k_{42}$ $k_{51} = k_{52}$ k_{62}	k_{43} k_{43} k_{53} k_{63}			$ \begin{bmatrix} d_{4} = 1 \\ d_{5} = 0 \\ d_{6} = 0 \end{bmatrix} $	e $d_1=u_i=1$	$\mathbf{a}_2=v_i=1$	$a d_3 = \varphi_i = 1$	$d_4 = u_k = 1$	$d_5 = v_k = 1$	$d_6=arphi_k=1$
odgovarajućo pomeranja kr	a jedi ajeva KE	nična (kratko	stanja stanja:	$d_j = 1$	neralisa	nih	stanje	stanje	stanje	stanje	stanje	stanje
							1	2	3	4	5	•
$ \begin{array}{c} N_i & -1 \rightarrow \\ T_i & -2 \rightarrow \\ M_i & -3 \rightarrow \\ N_k & -4 \rightarrow \\ T_k & -5 \rightarrow \end{array} \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ R_4 \\ R_5 \end{array} = $	$ \begin{bmatrix} k_{11} \\ k_{21} \\ k_{31} \\ k_{41} \\ k_{51} \end{bmatrix} $	k ₁₂ k ₂₂ k ₃₂ k ₄₂ k ₅₂	k ₁₃ k ₂₃ k ₃₃ k ₄₃ k ₅₃	k ₁₄ k ₂₄ k ₃₄ k ₄₄ k ₅₄	k ₁₅ k ₂₅ k ₃₅ k ₄₅ k ₅₅	$ \begin{array}{c} k_{16} \\ k_{26} \\ k_{36} \\ k_{46} \\ k_{56} \end{array} \left \begin{array}{c} d_1 \\ d_2 \\ d_3 \\ d_4 \\ d_5 \end{array} \right $	$ \begin{array}{c} -1 \\ -2 \\ -2 \\ -3 \\ -3 \\ -4 \\ -4 \\ -5 \\ -5 \\ -5 \\ -5 \\ -4 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5$	k ₁₂ k ₂₂ k ₃₂ k ₄₂ k ₅₂	k ₁₃ k ₂₃ k ₃₃ k ₄₃ k ₅₃	k ₁₄ k ₂₄ k ₃₄ k ₄₄ k ₅₄	k ₁₅ k ₂₅ k ₃₅ k ₄₅ k ₅₅	k ₁₆ k ₂₆ k ₃₆ k ₄₆ k ₅₆
$M_k - 6 \rightarrow \begin{pmatrix} -5 \\ R_6 \end{pmatrix}$	$k_{61}^{n_{51}}$	k_{62}	k_{63}	k_{64}	k_{65}	$\begin{bmatrix} 1 & 5 \\ k_{66} \end{bmatrix} \begin{bmatrix} 1 & 5 \\ d_6 \end{bmatrix}$	$-6 > \begin{bmatrix} k_{61} \\ k_{61} \end{bmatrix}$	k_{62}	k_{63}	k_{64}^{10}	k_{65}	k_{66}

1D KE. Statičko značenje elemenata matrice krutosti

1D KE. Vektor ekvivalentnog opterećenja

- Naziva se još i vektor ekvivalentnog čvornog opterećenja ili vektor konzistentnog koncentrisanog opterećenja
 - Može da se odredi i iz uslova da su virtualni radovi stvarnog spoljašnjeg opterećenja po KE i čvornih generalisanih sila međusobno jednaki

Temperaturna promena $\mathbf{Q} = \left\{ \begin{array}{c} Q_1 \\ Q_2 \end{array} \right\} = \int_0^L \mathbf{B}^T \mathbf{D} \mathbf{\varepsilon}_0 dx = \int_0^L \left[\frac{dN_1(x)}{dx} \\ \frac{dN_2(x)}{dx} \end{array} \right] EA \, \alpha_t t dx = EA \, \alpha_t t \left\{ \begin{array}{c} -1 \\ 1 \end{array} \right\}$

11

OMKE

1D KE. Vektor ekvivalentnog opterećenja

Komentar:

Elementi vektora *Q* su po apsolutnoj vrednosti (i suprotnog znaka) jednaki vrednostima generalisanih reakcija usled spoljašnjih dejstava u čvorovima KE koji su nepokretno uklješteni

1D KE. Oslobađanje veza

Oslobađa se momentna veza na početku štapa (stepen slobode 2; savijanje u x – y ravni)

$$R_{1} = \frac{EI}{L^{3}} [12d_{1} \quad 6Ld_{2} \quad -12d_{3} \quad 6Ld_{4}] - Q_{1}$$

$$R_{2} = \frac{EI}{L^{3}} [6Ld_{1} \quad 4L^{2}d_{2} \quad -6Ld_{3} \quad 2L^{2}d_{4}] - Q_{2} = \mathbf{0} \Rightarrow d_{2} = -\frac{3}{2L}d_{1} + \frac{3}{2L}d_{3} - \frac{1}{2}d_{4} + \frac{L}{4EI}Q_{2}$$

$$R_{3} = \frac{EI}{L^{3}} [-12d_{1} \quad -6Ld_{2} \quad 12d_{3} \quad -6Ld_{4}] - Q_{3}$$

$$R_{4} = \frac{EI}{L^{3}} [6Ld_{1} \quad 2L^{2}d_{2} \quad -6Ld_{3} \quad 4L^{2}d_{4}] - Q_{4}$$

1D KE. Oslobađanje veza

 Oslobađa se momentna veza na početku štapa (stepen slobode 2; savijanje u x – y ravni)

 $R_1 = \frac{EI}{L^3} [3d_1 \quad -3d_3 \quad 3Ld_4] + \left(-Q_1 + \frac{3}{2L}Q_2\right) \qquad \qquad R_2 = 0$

$$R_{3} = \frac{EI}{L^{3}} \begin{bmatrix} -3d_{1} & 3d_{3} & -3Ld_{4} \end{bmatrix} + \begin{pmatrix} -Q_{3} - \frac{3}{2L}Q_{2} \end{pmatrix} \qquad R_{4} = \frac{EI}{L^{3}} \begin{bmatrix} 3Ld_{1} & -3Ld_{3} & 3L^{2}d_{4} \end{bmatrix} + \begin{pmatrix} -Q_{4} + \frac{1}{2}Q_{2} \end{pmatrix}$$
$$R = \frac{EI}{L^{3}} \begin{bmatrix} 3 & 0 & -3 & 3L \\ 0 & 0 & 0 & 0 \\ -3 & 0 & 3 & -3L \\ 3L & 0 & -3L & 3L^{2} \end{bmatrix} \begin{pmatrix} d_{1} \\ d_{2} \\ d_{3} \\ d_{4} \end{pmatrix} - \begin{cases} Q_{1} - \frac{3}{2L}Q_{2} \\ 0 \\ Q_{3} + \frac{3}{2L}Q_{2} \\ Q_{4} - \frac{1}{2}Q_{2} \end{cases} \qquad Q = \begin{cases} Q_{1} - \frac{3}{2L}Q_{2} \\ 0 \\ Q_{3} - \frac{3}{2L}Q_{2} \\ Q_{4} - \frac{1}{2}Q_{2} \end{cases}$$

$$\mathbf{k}_{gk}^{s} = \frac{EI}{L^{3}} \begin{bmatrix} 3 & -3 & 3L \\ -3 & 3 & -3L \\ 3L & -3L & 3L^{2} \end{bmatrix}$$

1D KE. Transformacija vektora i matrica. Kosi oslonac

Ravanski KE

Prostorni sistem grednih KE

Prostorni sistem KE

$$u_{i} = u_{i}^{*}\cos\alpha + v_{i}^{*}\cos\beta + w_{i}^{*}\cos\gamma$$
$$u_{i} = u_{i}^{*}\cos(x, X) + v_{i}^{*}\cos(x, Y) + w_{i}^{*}\cos(x, Z)$$
$$\begin{cases}u_{i}\\v_{i}\\w_{i}\end{cases} = \begin{bmatrix}\cos(x, X) & \cos(x, Y) & \cos(x, Z)\\\cos(y, X) & \cos(y, Y) & \cos(y, Z)\\\cos(z, X) & \cos(z, Y) & \cos(z, Z)\end{bmatrix}\begin{cases}u_{i}^{*}\\v_{i}^{*}\\w_{i}^{*}\end{cases}$$
$$\mathbf{t} = \begin{bmatrix}\cos(x, X) & \cos(x, Y) & \cos(x, Z)\\\cos(y, X) & \cos(y, Y) & \cos(y, Z)\\\cos(z, X) & \cos(z, Y) & \cos(z, Z)\end{bmatrix}$$

$$\mathbf{d} = \mathbf{T}\mathbf{d}^* \qquad \mathbf{T} = \begin{bmatrix} \mathbf{T}_1 & 0\\ 0 & \mathbf{T}_2 \end{bmatrix} \qquad \mathbf{T}_i = \begin{bmatrix} \mathbf{t} & 0\\ 0 & \mathbf{t} \end{bmatrix} \quad i = 1,2$$

Prostorni sistem KE

 $\mathbf{t} = \begin{bmatrix} \cos(x, X) & \cos(x, Y) & \cos(x, Z) \\ \cos(y, X) & \cos(y, Y) & \cos(y, Z) \\ \cos(z, X) & \cos(z, Y) & \cos(z, Z) \end{bmatrix}$

Vektor \mathbf{v}_x kosinusa pravaca vektora \mathbf{V}_x određuje se na sledeći način:

$$\mathbf{v}_{x} = \begin{cases} \mathbf{cos}(x, X) \\ \mathbf{cos}(x, Y) \\ \mathbf{cos}(x, Z) \end{cases} = \frac{1}{L_{ij}} \begin{cases} X_{ji} \\ Y_{ji} \\ Z_{ji} \end{cases} \qquad L_{ij} = \sqrt{X_{ji}^{2} + Y_{ji}^{2} + Z_{ji}^{2}}$$

X

1D KE. Transformacija vektora i matrica

Х

γ

Prostorni sistem KE

Ζ

k

Ζ

ι =	$\cos(y, x)$	$\cos(y, T)$	$\cos(y, Z)$
	$\cos(z, X)$	$\cos(z, Y)$	$\cos(z, Z)$
t =	$\cos(x, X)$	$\cos(x, Y)$	$\cos(x, Z)$

Vektor V_z u pravcu lokalne ose z koja je upravna na ravan x-y određuje se na sledeći način:

$$\mathbf{V}_{z} = \mathbf{V}_{x} \times \mathbf{V}_{ik} = \begin{cases} -Y_{ki}Z_{ji} + Y_{ji}Z_{ki} \\ X_{ki}Z_{ji} - X_{ji}Z_{ki} \\ -X_{ki}Y_{ji} + X_{ji}Y_{ki} \end{cases}$$
$$\mathbf{V}_{ik} = \begin{cases} X_{k} - X_{i} \\ Y_{k} - Y_{i} \end{cases} = \begin{cases} X_{ki} \\ Y_{ki} \end{cases}$$

 $(Z_k - Z_i) \quad (Z_{ki})$

Vektor \mathbf{v}_z kosinusa pravaca vektora \mathbf{V}_z određuje se na sledeći način:

Tačka k leži u x-y ravni

$$\mathbf{v}_{z} = \begin{cases} \mathbf{cos}(z, X) \\ \mathbf{cos}(z, Y) \\ \mathbf{cos}(z, Z) \end{cases} = \frac{1}{2P} \begin{cases} -Y_{ki}Z_{ji} + Y_{ji}Z_{ki} \\ X_{ki}Z_{ji} - X_{ji}Z_{ki} \\ -X_{ki}Y_{ji} + X_{ji}Y_{ki} \end{cases}$$

2P je intenzitet vektorskog proizvoda i P je površina trougla i,j,k

$$P = \frac{1}{2} \begin{vmatrix} 1 & x_i & y_i \\ 1 & x_j & y_j \\ 1 & x_k & y_k \end{vmatrix}$$

Prostorni sistem KE

 $\mathbf{t} = \begin{bmatrix} \cos(x, X) & \cos(x, Y) & \cos(x, Z) \\ \cos(y, X) & \cos(y, Y) & \cos(y, Z) \\ \cos(z, X) & \cos(z, Y) & \cos(z, Z) \end{bmatrix}$

Vektor \mathbf{v}_y kosinusa pravaca između lokalne ose y i globalnih osa X, Y i Z određuje se kao vektorski proizvod vektora \mathbf{v}_z i \mathbf{v}_x (vektori jediničnog intenziteta koji su međusobno upravni) na sledeći način:

 $\mathbf{v}_{y} = \begin{cases} \mathbf{cos}(\mathbf{y}, \mathbf{X}) \\ \mathbf{cos}(\mathbf{y}, \mathbf{Y}) \\ \mathbf{cos}(\mathbf{y}, \mathbf{Z}) \end{cases} = \mathbf{v}_{z} \times \mathbf{v}_{x} = \begin{cases} \cos(x, Z)\cos(z, Y) - \cos(x, Y)\cos(z, Z) \\ -\cos(x, Z)\cos(z, X) + \cos(x, X)\cos(z, Z) \\ \cos(x, Y)\cos(z, X) - \cos(x, X)\cos(z, Y) \end{cases}$

- Potencijalna energija KE u globalnom koordinatnom sistemu glasi $\Pi_e^* = \frac{1}{2} \mathbf{d}_e^{*T} \mathbf{k}_e^* \mathbf{d}_e^* - \mathbf{d}_e^{*T} \mathbf{Q}_e^*$
- Ukupna potencijalna energija sistema KE dobija se sabiranjem potencijalnih energija svih KE

$$\Pi = \sum_{e=1}^{M} \Pi_{e}^{*} = \sum_{e=1}^{M} \left(\frac{1}{2} \mathbf{d}_{e}^{*T} \mathbf{k}_{e}^{*} \mathbf{d}_{e}^{*} - \mathbf{d}_{e}^{*T} \mathbf{Q}_{e}^{*} \right) = \frac{1}{2} \mathbf{d}_{Nx1}^{*T} \mathbf{K}_{NxN}^{*} \mathbf{d}_{Nx1}^{*} - \mathbf{d}_{Nx1}^{*T} \mathbf{Q}_{Nx1}^{*}$$

 gde su globalna matrica krutosti sistema, globalni vektor generalisanog ekvivalentnog opterećenja u čvorovima sistema (uvodi u analizu spoljašnja dejstva po KE) i globalni vektor spoljašnjih koncentrisanih generalisanih sila u čvorovima sistema (uvodi u analizu generalisane koncentrisane spoljašnje sile u čvorovima sistema KE) dati izrazima

$$\mathbf{K}_{NxN}^{*} = \sum_{e=1}^{M} \mathbf{k}_{e}^{*}$$
 $\mathbf{Q}_{Nx1}^{*} = \sum_{e=1}^{M} \mathbf{Q}_{e}^{*}$ $\mathbf{P}_{Nx1}^{*} = \sum_{i=1}^{N} P_{i}^{*}$

gde je *M* ukupan broj KE i *N* broj stepeni slobode čvorova sistema (mreže) KE

 Primenom principa o minimumu ukupne potencijalne energije dobijaju se uslovi ravnoteže u čvorovima sistema KE (indeksi su izostavljeni)

$$\delta \Pi = \mathbf{K}^* \mathbf{d}^* - \mathbf{Q}^* - \mathbf{P}^* = \mathbf{0}$$
 $\frac{\mathbf{S}^* = \mathbf{Q}^* + \mathbf{P}^*}{\mathbf{K}^* \mathbf{d}^* = \mathbf{Q}^* + \mathbf{P}^*}$ $\mathbf{K}^* \mathbf{d}^* = \mathbf{S}^*$

- Direktan postupak ili direktan metod ili metoda direktne superpozicije formiranja jednačina sistema KE
 - Matrica krutosti K*sistema KE u GKS se formira sabiranjem pojedinih elemenata matrica krutosti k* u GKS onih KE koji su povezani u istom čvoru i koji pripadaju istom globalnom stepenu slobode čvora. Postupak se obavlja tako što se stepeni slobode pojedinih KE u GKS obeleže se istim brojevima kao i odgovarajući stepeni slobode čvorova sistema KE u GKS, a u kojima su KE spojeni
 - Analognim postupkom formira se i vektor S*

Obeležavanje brojevima globalnih stepeni matrice k* i vektora Q*
 1
 2
 i 18
 15
 16

- Formira se matrica K* koja ima red jednak broju stepeni slobode čvorova mreže KE popunjena nulama
- Formira se vektor S* koja ima broj vrsta jednak broju stepeni slobode čvorova mreže KE popunjen nulama
- Po šemi prikazanoj ispod popunjava se matrica K* i vektor S*

Rešavanje jednačina sistema konačnih elemenata

- Da bi sistem jednačina mogao da se reši neophodno je uvesti esencijalne granične uslove
- Vektor globalnih stepeni slobode može da se podeli na deo:
 - koji sadrži nepoznata generalisana pomeranja ili <u>a</u>ktivna generalisana pomeranja d^{*}_a i
 - koji sadrži poznata (zadata) generalisana pomeranja ili <u>p</u>asivna generalisana pomeranja \mathbf{d}_p^*
- Analogno prethodnoj podeli može da se podeli i matrica krutosti sistema i vektor slobodnih članova
- Nakon ovakve podele, jednačine sistema KE mogu da se prikažu u sledećem obliku

$$\begin{bmatrix} \mathbf{K}_{aa}^{*} & \mathbf{K}_{ap}^{*} \\ \mathbf{K}_{pa}^{*} & \mathbf{K}_{pp}^{*} \end{bmatrix} \begin{bmatrix} \mathbf{d}_{a}^{*} \\ \mathbf{d}_{p}^{*} \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{a}^{*} \\ \mathbf{S}_{p}^{*} \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{K}_{aa}^{*} \mathbf{d}_{a}^{*} + \mathbf{K}_{ap}^{*} \mathbf{d}_{p}^{*} = \mathbf{S}_{a}^{*} \\ \mathbf{K}_{pa}^{*} \mathbf{d}_{a}^{*} + \mathbf{K}_{pp}^{*} \mathbf{d}_{p}^{*} = \mathbf{S}_{p}^{*} \end{bmatrix}$$
$$\mathbf{d}_{a}^{*} = \mathbf{K}_{aa}^{*-1} \mathbf{S}_{a}^{*} - \mathbf{K}_{aa}^{*-1} \mathbf{K}_{ap}^{*} \mathbf{d}_{p}^{*} \qquad \mathbf{R}_{p}^{*} = \mathbf{S}_{p}^{*} - \mathbf{Q}_{p}^{*} = \mathbf{K}_{pa}^{*} \mathbf{d}_{a}^{*} + \mathbf{K}_{pp}^{*} \mathbf{d}_{p}^{*} - \mathbf{Q}_{p}^{*}$$

Rešavanje jednačina sistema konačnih elemenata

- Sistem jednačina može da se reši i bez transformacija na deo sa poznatim i nepoznatim generalisanim pomeranjima čvorova mreže KE ako se elementima na glavnoj dijagonali matrice krutosti sistema, koji odgovaraju sprečenim generalisanim pomeranjima, doda relativno veliki broj, a to je ekvivalentno dodavanju relativno velike krutosti na mestu i u pravcu sprečenog generalisanog pomeranja. Relativno veliki broj može da se dobije kada se najveći broj u matrici krutosti, koji je, obično, neki od elemenata na glavnoj dijagonali, pomnoži npr. brojem 10⁶. Na ovaj način u rešenju se javljaju nule za generalisana pomeranja čvorova koja odgovaraju homogenim esencijalnim graničnim uslovima. Ovakav pristup olakšava implementaciju u računarski softver
- Jednačine ravnoteže sistema KE ne rešavaju se određivanjem inverzne matrice. Koriste postupci za rešavanje sistema linearnih algebarskih jednačina koji se dele u dve generalne grupe: direktni i iterativni. Direktni postupci su efikasniji za sisteme normalne veličine, a za jako velike sisteme jednačina efikasniji su iterativni postupci

 $\begin{bmatrix} \mathbf{K}_{aa}^* & \mathbf{K}_{ap}^* \\ \mathbf{K}_{pa}^* & \mathbf{K}_{pp}^* \end{bmatrix} \begin{bmatrix} \mathbf{d}_a^* \\ \mathbf{d}_p^* \end{bmatrix} = \begin{bmatrix} \mathbf{S}_a^* \\ \mathbf{S}_p^* \end{bmatrix}$

Određivanje kinematičkih i statičkih veličina u polju konačnog elementa

 Nakon određivanja vektora generalisanih pomeranja u čvorovima sistema KE mogu da se odrede generalisana pomeranja d* u čvorovima pojedinih KE, vodeći računa o uslovima kompatibilnosti pomeranja, u globalnom koordinatnom sistemu. Nakon toga, neophodno je odrediti vektore generalisanih pomeranja d, u čvorovima pojedinih KE, u lokalnom koordinatnom sistemu primenom izraza

$\mathbf{d} = \mathbf{T}\mathbf{d}^*$

 Raspodela generalisanih pomeranja u polju KE u funkciji generalisanih pomeranja u čvorovima KE određuje se na osnovu izraza

 $\mathbf{u} = \mathbf{N}\mathbf{d}$

 Raspodela deformacija i napona (sila u presecima) u polju KE određuje se primenom izraza

 $\varepsilon = Bd$ $\sigma = D\varepsilon$

Kvadratna reda n

 gde je n broj stepeni slobode čvorova KE, odnosno broj generalisanih pomeranja u čvorovima KE

• Simetrična u odnosu na glavnu dijagonalu $k_{ij} = k_{ji}$

Simetrija je posledica Betijeve teoreme o uzajamnosti (teorema o uzajamnosti radova)

Singularna

- Ako se KE pomera kao kruto telo tada su deformacije jednake nuli, generalisana pomeranja čvorova različita su od nule i generalisane sile u čvorovima jednake su nuli, tj. tada važi: kd = 0
- Prethodni, homogen, sistem jednačina može da ima rešenje različito od nule $(d \neq 0)$ samo ako je determinanta matrice **k** jednaka nuli, tj. ako je matrica **k** singularna, odnosno ako je rang matrice krutosti manji od njenog reda. Rang matrice krutosti manji je od njenog reda za broj stepeni slobode pomeranja KE kao krutog tela. Generalisane sile u čvorovima KE nisu međusobno nezavisne jer moraju da zadovolje uslove ravnoteže. Zaključuje se da postoji linearna zavisnost između jednog broja jednačina u sistemu **R** = **kd**

Pozitivno semidefinitna

- Svojstvene vrednosti matrice krutosti mogu da budu veće od nule ili jednake nuli
- Broj svojstvenih vednosti jednakih nuli odgovara broju stepeni slobode elementa kao krutog tela
- S obzirom na to da je vektor generalisanih sila proporcionalan vektoru generalisanih pomeranja čvorova važi

$${\mathbf{R} = \mathbf{kd} \\ \mathbf{R} = \lambda \mathbf{d} } \} \Rightarrow \mathbf{kd} = \lambda \mathbf{d}$$

- gde je λ faktor proporcionalnosti
- Na osnovu prethodnog izraza sledi

 $(\mathbf{k} - \lambda \mathbf{I})\mathbf{d} = \mathbf{0}$ (gde je λ svojstvena vrednost matrice \mathbf{k})

 Prethodni sistem homogenih jednačina ima netrivijalno rešenje (d≠0) ako je determinanta koeficijenata uz nepoznate jednaka nuli, odnosno karakteristična jednačina matrice krutosti glasi

 $\det(\mathbf{k} - \lambda \mathbf{I}) = 0$

Pozitivno semidefinitna

- Ako se prethodni izraz razvije dobija se karakteristični polinom matrice krutosti
- Koreni karakterističnog polinoma su svojstvene vrednosti λ_i (i = 1, 2, ..., n) ili karakteristične vrednosti matrice krutosti, a njima odgovarajući svojstveni ili karakteristični vektori $\bar{\mathbf{d}}_i$ matrice krutosti zadovoljavaju izraz

 $\mathbf{k}\bar{\mathbf{d}}_i = \lambda_i \bar{\mathbf{d}}_i$

• pri čemu su svojstveni vektori međusobno ortogonalni, tj. važi sledeće

$$\bar{\mathbf{d}}_i^T \mathbf{k} \bar{\mathbf{d}}_j = \begin{cases} \lambda_i, & i = j \\ 0, & i \neq j \end{cases}$$

Ako se svojstveni vektori normiraju na takav način da važi sledeće

$$\bar{\mathbf{d}}_{i}^{T} \bar{\mathbf{d}}_{j} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

• i ako se izraz $\mathbf{k}\bar{\mathbf{d}}_i = \lambda_i \bar{\mathbf{d}}_i$ pomnoži vektorom $\bar{\mathbf{d}}_i^T$, dobija se $\bar{\mathbf{d}}_i^T \mathbf{k}\bar{\mathbf{d}}_i = \lambda_i$

Pozitivno semidefinitna

Poređenjem izraza d ^T_i kd_i = λ_i i izraza U = $\frac{1}{2}$ d^Tkd za potencijalnu energiju deformacije KE zaključuje se da važi

 $\lambda_i = \bar{\mathbf{d}}_i^T \mathbf{k} \bar{\mathbf{d}}_i = 2U_i$

- gde je U_i potencijalna energija deformacije KE koja je uvek pozitivna vrednost
- Na osnovu prethodnog izraza dolazi se do fizičkog značenja svojstvenih vrednosti matrice krutosti
 - Svojstvena vrednost λ_i jednaka je dvostrukoj vrednosti potencijalne energije deformacije KE pri generalisanim pomeranjima koja odgovaraju komponentama svojstvenog vektora $\bar{\mathbf{d}}_i$
 - Ako se KE pomera kao kruto telo, potencijalna energija deformacije jednaka je nuli, odnosno odgovarajuća svojstvena vrednost jednaka je nuli. S obzirom na to da svojstvene vrednosti matrice krutosti mogu da budu veće od nule ili jednake nuli matrica krutosti je pozitivno semidefinitna
 - Svojstveni vektori d
 i
 i
 i
 mogu da se odrede samo kao relativna generalisana pomeranja u odnosu na proizvoljno izabranu veličinu, tako da oni opisuju samo kvalitativno oblike ili forme pomeranja KE

Primer. Test svojstvenih vrednosti. Štapni KE

 Kod prostog štapa izloženog aksijalnom naprezanju svojstvene vrednosti i njima odgovarajući svojstveni vektori su

$$\lambda_1 = \frac{2EA}{L}, \quad \bar{\mathbf{d}}_1 = \left\{ -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\}^T \quad \lambda_2 = 0, \quad \bar{\mathbf{d}}_2 = \left\{ \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\}^T$$

- S obzirom na to da je jedna svojstvena vrednost (λ₂) jednaka nuli štapni KE ima jedan stepen slobode kao kruto telo, a to je pomeranje KE kao celine u pravcu ose KE
- Rang matrice krutosti je jedan zato što je jedna svojstvena vrednost različita od nule
- S obzirom na to da je jedna svojstvena vrednost jednaka nuli postoji jedna zavisnost između sila u čvorovima KE, a to je uslov ravnoteže sila u pravcu ose KE
- Potencijalna energija deformacije KE pri pomeranjima $ar{\mathbf{d}}_1$

$$\bar{\mathbf{d}}_{1} = \begin{cases} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{cases} = \begin{cases} u_{1} \\ u_{2} \end{cases} \quad \rightarrow \quad u(x) = \left(1 - \frac{x}{L}\right)u_{1} + \left(\frac{x}{L}\right)u_{2} \quad \rightarrow \quad U = \frac{1}{2} \int_{L} EA\left(\frac{du}{dx}\right)^{2} dx = \frac{EA}{L} \qquad \qquad \lambda_{1} = \frac{2EA}{L} = 2U$$

gde

Osobine matrice krutosti sistema konačnih elemenata

Simetrična i kvadratna

- Singularna jer su u generalisanim pomeranjima čvorova sistema sadržana i pomeranja sistema kao krute figure
- Reda n, gde je n broj stepeni slobode čvorova sistema
- Ima trakastu strukturu jer je u jednom čvoru, uobičajeno, povezano manje KE od ukupnog broja KE u sistemu. Širina polutrake b zavisi od načina numeracije čvorova, odnosno zavisi od razlike između brojeva susednih čvorova i broja stepeni slobode u čvoru. Širina polutrake b iznosi

$$b = (m+1)s$$

$$gde je m maksimalna razlika između brojeva čvorova na jednom elementu, a s broj stepeni slobode u čvoru
$$b = (m+1)s$$

$$(a_{2}, a_{3}, b_{3}, c_{7}, s, 91011121314}$$

$$(a_{2}, a_{3}, c_{7}, s, 91011121314})$$

$$(a_{2}, a_{2}, c_{7}, s, 9101112134})$$

$$(a_{2}, a_{2}, c_{7}, s, 9101112134)$$

$$(a_{2}, a_{2}, c_{7}, s, 910112134)$$$$

Uža traka sa manjim brojem nula prouzrokuje kraće vreme proračuna i manju potrebu za memorijom

Linearna statička analiza linijskih nosača. Primer

Konzola

Linearna statička analiza linijskih nosača. Primer $2 d_2 = \varphi_1$

Konzola

Raspodela pomeranja u polju KE

$$w(x) = \mathbf{N}\mathbf{d} = w_1 N_1(x) + \varphi_1 N_2(x) + w_2 N_3(x) + \varphi_2 N_4(x)$$

$$w(x) = \frac{q_z L^4}{8EI_y} \left(\frac{3x^2}{L^2} - \frac{2x^3}{L^3}\right) - \frac{q_z L^3}{6EI_y} \left(\frac{x^2}{L} - \frac{x^3}{L^2}\right) = \frac{q_z L^4}{24EI_y} \left(\frac{5x^2}{L^2} - \frac{2x^3}{L^3}\right)$$
$$w\left(\frac{L}{2}\right) = 0,33333 \left(\frac{q_z L^4}{8EI_y}\right) \qquad w(L) = 1,00000 \left(\frac{q_z L^4}{8EI_y}\right) \qquad \text{Komentar}$$
Generalisana pomeranja
Tačno rešenje $w(x) = \frac{q_z L^4}{24EI_y} \left(6\frac{x^2}{L^2} - 4\frac{x^3}{L^3} + \frac{x^4}{L^4}\right) \qquad \text{Komentar}$

Raspodela momenata savijanja u polju KE

$$\begin{aligned} &\sigma = D\epsilon \\ &\epsilon = Bd \end{aligned} \} \Rightarrow \sigma = DBd = Sd \end{aligned}$$

jednaka

Linearna statička analiza linijskih nosača. Primer $2^{d_2^*=\varphi_1^*}$

Konzola

Raspodela momenata savijanja u polju KE

$$\mathbf{D} = \begin{bmatrix} EI_y \end{bmatrix} \qquad \mathbf{B} = \mathbf{D}_k \mathbf{N} = \begin{bmatrix} -\frac{d^2}{dx^2} \end{bmatrix} \begin{bmatrix} N_1 & N_2 & N_3 & N_4 \end{bmatrix} = \begin{bmatrix} \frac{6}{L^2} - \frac{12x}{L^3} & -\frac{4}{L} + \frac{6x}{L^2} & -\frac{6}{L^2} + \frac{12x}{L^3} & -\frac{2}{L} + \frac{6x}{L^2} \end{bmatrix}$$

$$\mathbf{S} = \mathbf{D}\mathbf{B} = EI_y \begin{bmatrix} \frac{6}{L^2} - \frac{12x}{L^3} & -\frac{4}{L} + \frac{6x}{L^2} & -\frac{6}{L^2} + \frac{12x}{L^3} & -\frac{2}{L} + \frac{6x}{L^2} \end{bmatrix}$$

$$M_y(x) = \mathbf{S}\mathbf{d} = \frac{q_z L^2}{12} \left(-5 + \frac{6x}{L}\right)$$

$$M_y(0) = -0.83333 \frac{q_z L^2}{2}$$

$$M_y(0) = -0.83333 \frac{q_z L^2}{2}$$

$$M_y(L) = 0.16667 \frac{q_z L^2}{2}$$

$$Tačno rešenje \qquad M_y(x) = -EI_y \frac{d^2w}{dx^2} = \frac{q_z L^2}{12} \left(-6 + \frac{12}{L}x - \frac{6}{L^2}x^2\right)$$

Linearna statička analiza linijskih nosača. Primer $2^{d_2 = \varphi_1}$

Konzola

 Raspodela transverzalnih sila u polju KE

$$T_{z} = EI_{y} \frac{6\left(-2w_{1} + 2w_{2} + L(\varphi_{1y} + \varphi_{2y})\right)}{L^{3}} = \frac{q_{z}L}{2}$$

Tačno rešenje

$$T_z(x) = -EI_y \frac{d^3w}{dx^3} = q_z(L-x)$$

 $=W_1$

- Komentar
 - Generalisane sile u čvorovima KE jednake su tačnom rešenju

$$\mathbf{R} = \mathbf{k}\mathbf{d} - \mathbf{Q} = \frac{EI_{y}}{L^{3}} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 12 & -6L & -12 & -6L & 1 \\ -6L & 4L^{2} & 6L & 2L^{2} & 2 \\ -12 & 6L & 12 & 6L & 3 \\ -6L & 2L^{2} & 6L & 4L^{2} & 4 \end{bmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 2 \\ \frac{q_{z}L^{4}}{8EI_{y}} & 3 \\ -\frac{q_{z}L^{3}}{6EI_{y}} & 4 \end{pmatrix} - q_{z}L \begin{cases} \frac{1}{2} & 1 \\ -\frac{1}{12} & 2 \\ \frac{1}{2} & 3 \\ \frac{1}{12} & 4 \end{pmatrix} = \begin{cases} -q_{z}L & 1 \\ +\frac{q_{z}L^{2}}{2} & 2 \\ 0 & 3 \\ 0 & 4 \end{pmatrix}$$

 $d_{3}^{*} = w_{2}$

Linearna statička analiza linijskih nosača. Primer

Konzola

- $\begin{array}{c} 2 \\ q_{2}^{*} = \varphi_{1}^{*} \\ 1 \\ q_{1}^{*} = w_{1}^{*} \\ Z \end{array} \begin{array}{c} 4 \\ q_{4}^{*} = \varphi_{2}^{*} \\ q_$
- Približavanje tačnom rešenju može da se postigne sa povećanjem broja KE

$$\mathbf{k}_{1} = \mathbf{k}_{1}^{*} = \frac{EI_{y}}{\left(\frac{L}{2}\right)^{3}} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 12 & -6(L/2) & -12 & -6(L/2) & 1 \\ -6(L/2) & 4(L/2)^{2} & 6(L/2) & 2(L/2)^{2} & 2 \\ -12 & 6(L/2) & 12 & 6(L/2) & 3 \\ -6(L/2) & 2(L/2)^{2} & 6(L/2) & 2(L/2)^{2} & 4 \end{bmatrix} \qquad \mathbf{k}_{2} = \mathbf{k}_{2}^{*} = \frac{EI_{y}}{\left(\frac{L}{2}\right)^{3}} \begin{bmatrix} 3 & 4 & 5 & 6 \\ 12 & -6(L/2) & 4(L/2)^{2} & 6(L/2) & 2(L/2)^{2} & 4 \\ -12 & 6(L/2) & 12 & 6(L/2) & 5 \\ -6(L/2) & 2(L/2)^{2} & 6(L/2) & 4(L/2)^{2} & 6 \end{bmatrix}$$
$$\mathbf{Q}_{1} = \mathbf{Q}_{1}^{*} = q_{z}L \begin{cases} \frac{1}{4} & 1 \\ -\frac{L}{48} & 2 \\ \frac{1}{4} & 3 \\ \frac{1}{4} & 3 \\ \frac{L}{48} & 4 \end{bmatrix} \qquad \mathbf{Q}_{2} = \mathbf{Q}_{2}^{*} = q_{z}L \begin{cases} \frac{1}{4} & 3 \\ -\frac{L}{48} & 4 \\ \frac{1}{4} & 5 \\ \frac{L}{48} & 6 \end{bmatrix} \qquad \frac{EI_{y}}{L^{3}} \begin{bmatrix} 3 & 4 & 5 & 6 \\ 192 & 0 & -96 & -24L & 3 \\ 0 & 16L^{2} & 24L & 4L^{2} & 4 \\ -96 & 24L & 96 & 24L & 5 \\ -24L & 4L^{2} & 24L & 8L^{2} & 6 \end{bmatrix} \begin{bmatrix} \frac{d_{3}}{d_{4}} \\ \frac{d_{5}}{d_{6}} \\ \frac{d_{6}}{d_{6}} \end{bmatrix} = q_{z}L \begin{cases} \frac{1}{2} & 3 \\ 0 & 4 \\ \frac{1}{4} & 5 \\ \frac{L}{48} & 6 \end{bmatrix}$$

$$\begin{cases} d_3^* \\ d_4^* \\ d_5^* \\ d_6^* \end{cases} = \begin{cases} w_2^* \\ \varphi_2^* \\ w_3^* \\ \varphi_3^* \end{cases} = \begin{cases} w_2^2 \\ \varphi_2^2 \\ w_3^* \\ \varphi_3^* \end{cases} = \begin{cases} \frac{q_z L^3}{EI_y} \begin{cases} \frac{17L}{384} & 3 \\ -\frac{7}{48} & 4 \\ \frac{L}{8} & 5 \\ -\frac{1}{6} & 6 \end{cases} \qquad \mathbf{d}^{1*} = \mathbf{d}^1 = \begin{cases} d_1^* \\ d_2^* \\ d_3^* \\ d_4^* \end{cases} = \begin{cases} w_1 \\ \varphi_1 \\ w_2 \\ \varphi_2 \\ \varphi_$$

Linearna statička analiza linijskih nosača. Primer 2 $4 d_4^* = \varphi_2^*$ $d_2^{\bar{}}=\varphi_1^{\bar{}}$ $\frac{1}{3} d_3^* = w_2^*$ ໌1

Konzola

$$w^{1}(x) = \mathbf{N}\mathbf{d}^{1} = w_{1}N_{1}(x) + \varphi_{1}N_{2}(x) + w_{2}N_{3}(x) + \varphi_{2}N_{4}(x)$$

$$w^{2}(x) = \mathbf{N}\mathbf{d}^{2} = w_{2}N_{1}(x) + \varphi_{2}N_{2}(x) + w_{3}N_{3}(x) + \varphi_{3}N_{4}(x)$$

$$w^{1}(x) = \frac{q_{z}L^{4}}{24EI_{y}} \left[\frac{23}{4} \left(\frac{x}{L} \right)^{2} - 3\left(\frac{x}{L} \right)^{3} \right] \qquad w^{2}(x) = \frac{q_{z}L^{4}}{24EI_{y}} \left[\frac{17}{16} + \frac{7}{2}\frac{x}{L} + \frac{5}{4} \left(\frac{x}{L} \right)^{2} - 3\left(\frac{x}{L} \right)^{3} \right]$$

$$w^{1}\left(\frac{L}{2}\right) = 0,35417\left(\frac{q_{z}L^{4}}{8EI_{y}}\right) \qquad w^{2}(0) = 0,35417\left(\frac{q_{z}L^{4}}{8EI_{y}}\right)$$

$$w^2\left(\frac{L}{2}\right) = 1,00000\left(\frac{q_z L^4}{8EI_y}\right)$$

Komentar:

 $d_1^* = w_1^*$

Generalisana pomeranja u čvorovima jednaka su tačnom rešenju

 $\begin{bmatrix} 3 \\ 5 \end{bmatrix} d_5^* = w_3^*$

(2)

L/2

Linearna statička analiza linijskih nosača. Primer $2 e^{d_2^* = \varphi_1^*} e^{d_4^* = \varphi_2^*}$

Konzola

$$\mathbf{D} = \begin{bmatrix} EI_y \end{bmatrix} \qquad \mathbf{B} = \mathbf{D}_k \mathbf{N} = \begin{bmatrix} \frac{24}{L^2} - \frac{96x}{L^3} & -\frac{8}{L} + \frac{24x}{L^2} & -\frac{24}{L^2} + \frac{96x}{L^3} & -\frac{4}{L} + \frac{24x}{L^2} \end{bmatrix}$$

$$\mathbf{S} = \mathbf{D}\mathbf{B} = EI_y \begin{bmatrix} \frac{24}{L^2} - \frac{96x}{L^3} & -\frac{8}{L} + \frac{24x}{L^2} & -\frac{24}{L^2} + \frac{96x}{L^3} & -\frac{4}{L} + \frac{24x}{L^2} \end{bmatrix}$$

$$M_y^1(x) = \mathbf{S}\mathbf{d}^1 = \frac{q_z L^2}{2} \left(-\frac{23}{24} + \frac{3x}{2L} \right)$$

$$M_y^2(x) = \mathbf{S}\mathbf{d}^2 = \frac{q_z L^2}{2} \left(-\frac{5}{24} + \frac{x}{2L} \right)$$

$$T_z = EI_y \frac{6(-2w_1 + 2w_2 + L(\varphi_{1y} + \varphi_{2y}))}{L^3}$$

$$T_z^1(x) = \frac{3}{4}q_z L$$

$$T_z^2(x) = \frac{1}{4}q_z L$$
Komentar:

0,96

0,21

Generalisane sile **R=kd-Q** u čvorovima KE jednake su tačnom rešenju $\begin{bmatrix} 3 \\ 5 \end{bmatrix} d_5^* = w_3^*$

(2)

L/2

 $\overline{3} \phi_{d_3}^* = w_2^*$

 $d_1^* = w_1^*$

Linearna statička analiza linijskih nosača. Primer $M_{V} \cdot \frac{q_{L}^{2}}{2}$

Konzola

Komentar:

Primeri za prostu gredu i ravanski okvir su dati u udžbeniku Metoda konačnih elemenata, deo l

